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Abstract
In this thesis we will investigate the properties of light quarks and the π-meson
(pion) based on the corresponding Dyson-Schwinger equation for quarks and the
Bethe-Salpeter equation for bound states of quarks and antiquarks. We investigate,
how mass is generated dynamically due to spontaneously broken chiral symmetry
in the underlying quantum field theory, quantum chromodynamics (QCD), and
we will calculate the effects on the mass and the leptonic decay constant of the
pion. Furthermore we will investigate, how these properties behave under Lorentz
transformation into a moving frame of reference in our model and what effect
different approaches to regularization of the ultraviolet divergence of the theory
have.

Zusammenfassung
In dieser Arbeit werden die physikalischen Eigenschaften leichter Quarks und
des π-Mesons (Pion) untersucht, indem die zugrunde liegende Dyson-Schwinger
Gleichung für Quarks und die Bethe-Salpeter Gleichung für gebundene Quark-
Antiquark Zustände gelöst werden. Es wird untersucht, wie Masse durch spon-
tane Symmertriebrüche in der zugrunde liegenden Quantenfeldtheorie (QCD) dy-
namisch erzeugt wird und wie sich diese Effekte auf die Masse und Zerfallskon-
stante des Pions auswirkt. Weiterhin wird das Verhalten dieser Eigenschaften
unter Lorentz Transformation in ein bewegtes Bezugssystem sowie die Auswirkung
verschiedener Regularisierungen auf die Theorie untersucht.
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Chapter 1

Introduction

For a long time humans have been wondering, how the matter that makes up the
world is structured. Even ancient Greek philosophers were debating,if everything
was a continuous matter made out of the elements fire, water, earth and air (Aris-
totle, 384 - 322 BC) or if, at the smallest scales, matter was grainy and made out
of individual particles that moved freely through empty space (Democritus, c. 460
– c. 370 BC; Leucippus, 5th cent. BC). Certainly, there were no methods back
in their days to look even closely at the scales required to confirm either of these
models. Because of that, the model of a continuous matter was widely accepted
for the longest time, since the idea of completely empty space was hard to com-
prehend. Only in the early 19th century evidence arose, that matter was made up
of elementary particles (Proust, 1799; Dalton, 1805). As time went on, it became
clearer and clearer, that these elementary particles exist. In respect to the ancient
Greek philosophers, they have been called atoms, from the Greek word ατoµoς for
irreducible. It quickly became obvious, that these atoms can’t be the final step.
Several experiments showed, that an atom has to have an inner structure itself
consisting of an electron cloud surrounding a small and massive nucleus. While
trying to describe what happens at the scales of the nucleus two main problems
arose.

The first one was to combine quantum mechanics, the theory of the smallest
scales in the universe, with general relativity, which describes the heaviest and
fastest objects. The problem is, that the fundamental equations of quantum me-
chanics, especially the Schrödinger Equation, are not given in a covariant form,
which is required to be compatible with relativity. For the case of special relativity
this problem was first solved by P. Dirac, who managed to bring the equation of
motion of quantum mechanics into a covariant form, called the Dirac Equation.
This let to the discovery of many new physical phenomena, such as spin, negative
energies and antiparticles.

The second big problem was the finding, that the nucleus consists of multiple
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particles itself which all have a positive electric charge, protons, or have no electric
charge at all, neutrons. In the classic model all nuclei containing more than one
proton had to be unstable. This lead to the assumption that there is an additional
interaction between nucleons that is very strong at small distances but negligible
at larger ones. Together with results from deep-inelastic scattering experiments,
Gell-Mann and Zweig first proposed a model that explains the spectrum of strongly
interacting particles in the early 1960’s.Their model describes Mesons and Baryons
as bound states of elementary particles, called quarks, and their antiparticles. The
model needed three different types of quarks, so called flavours, to describe every
observed bound state. These flavours are called up (u), down (d) and strange (s).1
The quarks are spin ½ fermions with an electric charge of +2/3 for up quarks
and -1/3 for down and strange quarks. There were still problems with the quark
model as it failed to correctly interpret some excited states like the ∆++. It has
an electric charge of +2 and spin 3/2 so it has to consist of three up quarks with
parallel spin. This would result in a symmetric wave function in spin and flavour
space. Since quarks are fermions and obey Fermi-Dirac statistics the wave function
of every bound state of quarks has to be antisymmetric. To solve this problem, an
additional, unobserved quantum number was proposed – the color. Every quark
should have one of three different color charges, red (r), green (g) or blue (b) so
that every bound state of quarks and antiquarks should not have any net color. A
particle with a symmetric wave function in spin and flavour space can then have
a antisymmetric wave function in color space, resulting in a antisymmetric wave
function in total.

The quantum field theory describing the strong interaction with the quark
model and color charges is known as Quantum Chromodymanics (QCD), which
we will work with in this thesis. Using fundamental equations of QCD we will
see how mass is generated dynamically. While within the standard model the
current quark masses are well known, they only make up a small fraction of the
hadronic mass. A simple example for this is the proton. It consists of two up
and one down quark with a combined current mass of mc = 9.0 MeV,2 but the
proton itself has a mass of mp = 928 MeV [1]. Even for the masses of light mesons
a simple addition of the current quark masses is not sufficient anymore. In this
thesis the π-meson, or pion, is of particular interest, as we will take a closer look
at how its mass is generated dynamically in the Bethe-Salpeter formalism. This
formalism leads to bound states of quarks and antiquarks which have to satisfy
certain conditions by the symmetries of the underlying quantum field theory. For
the underlying equation of this formalism, the Bethe-Salpeter equation (BSE), to

1As heavier particles have been observed, the model has been extended by the flavours
charm (c), bottom (b) and top (t)

2Throughout this thesis we will use natural units, see section A.3.
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be solved we first need to know the propagator of quarks. It is obtained by solving
the Dyson-Schwinger equations (DSE’s), a set of self-consistent equations for the
quark propagator, the gluon propagator and the quark-gluon vertex including all
possible interactions between those. Since the DSE’s cannot all be solved in gen-
eral, some truncation schemes will be applied to give an approximate solution. By
solving the BSE we will get information about the pion’s fundamental properties,
such as its mass and its decay constant. Since these values are Lorentz scalars they
should stay invariant under a Lorentz transformation into a moving frame. But
since we are applying truncation schemes to simplify the equations, the Lorentz
invariance might be violated.

At first this thesis will give a brief introduction to the basic principles that are
needed to understand to have the necessary theoretical knowledge. In particular we
will take a look at the underlying principles of field theories, especially QCD, and
discuss the topic of symmetries and spontaneous symmetry breaking. Then we will
introduce the Dyson-Schwinger equation as an equation of motion for the quark
propagator as well as the Bethe-Salpeter equation as an equation for bound states
of quark-antiquark pairs. We will simplify these equations using the Rainbow-
Ladder truncation scheme and take a closer look at multiple ways to regularize the
ultraviolet divergence of the theory. After that we investigate the transformation
properties of the values obtained in the truncation schemes used and see how the
pion’s properties behave in a moving frame. The results of this thesis’ calculations
will then be presented together with the explicit mathematical approach. We will
also discuss how far the chosen model is able to reproduce suitable approximations
of the experimental values of the physical quantities, which are calculated. Finally,
we will reflect the results of the calculations and give an outlook at how the results
of this thesis are relevant to present and future research activities.

The appendix includes important conventions and relations that are used of-
ten in the calculations of this thesis. Also some important derivations are given
explicitly in it.



Chapter 2

Physical principles

2.1 The Lagrangian formalism
In physics it is common that there are multiple ways to solve the same problem.
In classical mechanics it does not matter if we use Newton’s laws of motion to get
the equations of motion of our system or if we use the Lagrangian or Hamilton
formalism. The only thing that is important is that the resulting equations have
to be equivalent and independent of the formalism used to obtain them. The
same thing holds true for quantum field theory. As long as the physics that can
be measured stays the same, it is irrelevant how it is described mathematically.
So for convenience the Lagrange formalism is used in quantum field theory most
of the time. In this formalism our system is described by a Lagrangian density
L(φ, ∂µφ, t), which in general depends on the fields φ, their derivatives ∂µφ and the
time t. The field equations are obtained in close analogy to classical mechanics by
the principle of least action. It states that the physical configurations of the fields
are those for which the action

S :=

∫
d4xL(φ, ∂µφ, t) (2.1)

is stationary, i.e. every variation of it vanishes

δS|φ=φ0
= 0. (2.2)

Analogously to classical mechanics one easily derives the Euler-Lagrangian equa-
tion

∂L
∂φ

= ∂µ
∂L

∂(∂µφ)
. (2.3)
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An example for this is the Lagrangian density of a free spin ½-field, given by

L0 = ψ(i/p−m)ψ, (2.4)

where ψ and ψ = ψ†γ0 are the operators of the field and its adjoined operator
respectively, m is the mass of the particles of the field and p is the momentum
operator. We use the Feynman slash notation notation1

/p = γµp
µ (2.5)

with the gamma matrices γµ introduced in section A.2 of the appendix. Plugging
this Lagrangian into eq. (2.3) yields

(i/∂ −m)ψ = 0 (2.6)

ψ(i
←−
/∂ −m) = 0, (2.7)

where
←−
/∂ implies a differentiation of the field on the left after applying the Feynman

slash. Those equations are equivalent to the Dirac equation of free fermions, so
the Lagrangian density (2.4) describes this problem correctly.

2.2 Symmetries
In physics, symmetries are of great interest. Not only can they be used to greatly
simplify many calculations as it will be seen later on, they also often lead to physical
phenomena. One of the great benefits of the Lagrangian formalism is that it is
relatively simple to find and interpret symmetries. One important example is
Noether’s theorem, which states that every differentiable continuous symmetry of
a system’s Lagrangian density corresponds to a conservation law. One example
of such a continuous symmetry is a global phase shift eiθ. Since a wave function
cannot be measured itself but its absolute value can, the Lagrangian should be
invariant under those phase shifts, i.e.

L(ψ, ψ, t) !
= L(ψ′

, ψ′, t), (2.8)

where ψ′ = eiθψ and ψ′
= e−iθψ are the transformed field operator and its adjoined

operator. Obviously the free Lagrangian density (2.4) satisfies this condition for
1For more information and useful properties of this notation, section A.4 can be consulted.
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global phase shifts. Since the set of all global phase shifts is a valid represen-
tation of the unitary group of degree 1, we say that the Lagrangian is invariant
under transformations of the U(1) group.2 The conservation law obtained by this
symmetry is the continuity equation of classical electrodynamics

∂µjµ = ∇~j + ∂ρ

∂t
= 0, (2.9)

where jµ = (iρ,~j) is the conserved four-vector with ρ being the charge density and
~j being the current density. Integrating eq. (2.9) over all of 3D-Space gives

∂

∂t

∫
d3xρ =

∂Q

∂t
= 0. (2.10)

To see that the integral over∇~j is equal to zero, we use Gauss’s divergence theorem
and use the fact, that ~j has to vanish at infinity. With that we have shown, that
invariance under U(1) is equivalent to conservation of electric charge.

Most quantum field theories have additional symmetries. One of them is the
generalization of global U(1) invariance to local U(1) invariance, i.e. invariance
under all local phase shifts eiα(x). In QCD we get additional degrees of freedom
due to the different color charges, which correspond to an SU(3) invariance. From
this symmetry several properties of the field theory can be followed. If we take a
look at the totally antisymmetric tensor εijk, we see that it transforms under an
SU(3) transformation according to

εijk → Uii′Ujj′Ukk′εi′j′k′ = detUεijk = εijk, (2.11)

since detU = 1. Therefore it is invariant under SU(3). Under the assumption
that all hadron wave functions have to be invariant under SU(3) too, it can be
shown that the only simple combinations allowed are

qiqi, εijkqiqjqk, εijkq
iqjqk, (2.12)

which correspond to mesons, baryons and antibaryons respectively.
From the SU(3) invariance additionally follows that new spin 1 particles, the

gluons, occur, which are the QCD equivalent of the photon. We can also see
2In general we say a Lagrangian is invariant under the transformation of a group G, if there

is an isomorphic representation d : G → GL(V ) of that group, such that the Lagrangian is
invariant under all transformations of the form ψ 7→ ψ′ = d(A) · ψ for all A ∈ G.
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that they have to have zero mass, since an additional mass term occurring in the
Lagrangian would not be invariant under local U(1) transformations. As a result
the full Lagrangian is more complicated than the free Lagrangian (2.4), containing
not only the Dirac field ψ, but also gluon terms[2],

L = ψ(i /D −m)ψ +
1

4
F a
µνF

µν
a , (2.13)

where Dµ = ∂µ+igAµ is the covariant derivative, F µν
a = ∂µAν

a−∂νAµ
a+ig [A

µ
a , A

ν
a]−

is the gluon field-strength tensor and Aµ
a , with a ∈ (1, 2, . . . , 8), are the eight

gluon fields. The full Lagrangian is invariant under local gauge transformations
ψ → ψ′ = Uψ with U(x) ∈ SU(3), if the gluon fields transform according to

Aµ → (A′)
µ
= UAµU † − i

g
U
(
∂µU †) , (2.14)

where Aµ
a has been replaced with Aµ = Aµ

aT
a and T a are the generators of the

SU(3). If we expand the covariant derivative in the Lagrangian (2.13), we get three
different terms L = L0+Lqg+Lgg The first term L0 is equal to the free Lagrangian
(2.4) and describes the kinetic energy of the Dirac particles. The second term

Lqg = −gψ /Aψ (2.15)

describes the interaction of quarks and gluons with g being the coupling strength,
and lastly the third term

Lgg =
1

4
F a
µνF

µν
a (2.16)

describes the energy density of the gluon fields. In contrast to the Lagrangian of
QED, the QCD Lagrangian contains a commutator [Ta, Tb]− that does not vanish,
since SU(3) is a non-Abelian group. Thus the perturbative series of Feynman
diagrams also contains three-gluon and four-gluon vertices, fig. 2.1, which we
interpret as gluon-gluon interactions. Because of that, the gluons have to carry
a color charges themselves in contrast to the photon, which does not carry any
charge. This leads to many ways in which a quark can propagate. We will further
analyze this when we investigate the quark DSE.
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Figure 2.1: The three-gluon and four-gluon vertices arising from the non vanishing
commutator [Ta, Tb]−.

2.3 Symmetry breaking

2.3.1 General principles
As already mentioned in the previous section, symmetries are very interesting in
physics. It is also interesting to see what happens when symmetries are broken.
The phenomenon of the effective quark masses being different from the current
quark masses for instance is a consequence of chiral symmetry being spontaneously
broken in QCD. To start this section of we first have to define what it means, when
a symmetry is exact, broken explicitly or broken spontaneously. [2]

Definition 2.3.1 (Exact symmetry) Let L be the Lagrangian of a field theory
and let |ϕ0〉 be the ground state of the system. We call a transformation

L 7→ L′

|ϕ0〉 7→ |ϕ′
0〉

an exact symmetry, if both the resulting equations of motion and |ϕ0〉 are invariant
under this transformation, i.e. L′ = L + α∂µJ µ(x) for some function J µ and
|ϕ0〉 = |ϕ′

0〉.

Definition 2.3.2 (Explicitly broken symmetry) Let L be the Lagrangian of a
field theory and let |ϕ0〉 be the ground state of the system. We call a transformation

L 7→ L′

|ϕ0〉 7→ |ϕ′
0〉

an explicitly broken symmetry, if both the resulting equations of motion and |ϕ0〉 are
not invariant under this transformation, i.e. L′ 6= L+α∂µJ µ(x) and |ϕ0〉 6= |ϕ′

0〉.
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Definition 2.3.3 (Spontaneously broken symmetry) Let L be the Lagran-
gian of a field theory and let |ϕ0〉 be the ground state of the system. We call a
transformation

L 7→ L′

|ϕ0〉 7→ |ϕ′
0〉

a hidden or spontaneously broken symmetry, if the resulting equations of motion
are invariant under this transformation but |ϕ0〉 is not, i.e. L′ = L + α∂µJ µ(x)
and |ϕ0〉 6= |ϕ′

0〉.

From this definition follows, that the ground state of a system containing spon-
taneous symmetry breaking has less symmetries than the Lagrangian itself. A
classic example for this is a ferromagnet. The spin-spin interactions of a ferro-
magnet are invariant under all spacial rotations, which means that the system’s
Lagrangian as well as its Hamiltonian are SO(3) invariant. If the temperature of
the ferromagnet is lower than its Curie temperature T < Tc, it has a non vanishing
magnetization ~M , which obliterates at temperatures higher than the Curie tem-
perature. Since the magnetization has a well defined direction, all rotation other
than around the magnetization’s axis do not leave the ground state invariant. This
means that the ground state only has a SO(2) symmetry left. Another common
phenomenon of spontaneously broken symmetries is that the ground state is de-
generate. This means that there are multiple realizations for the state of lowest
energy, which can be transformed into each other.3 In the case of the ferromag-
net this degeneracy is displayed in a way, that the remaining SO(2) symmetry of
the ground state allows the magnet to be rotated around the magnetization’s axis
without changing the states energy.

2.3.2 Chiral symmetry
Besides spin, color, helicity and other abstract properties a particle can have, an
additional property, the chirality, is of particular interest in QCD. To investigate
this property we first take a look at the fermionic part of the QCD Lagrangian
(2.13). If we only consider the lightest u and d quarks, the Lagrangian simplifies
to [2]

L = iu /Du+ id /Dd−muuu−mddd, (2.17)
3In most cases these transformations are continuous, although there are also cases, where the

realizations of the ground state are connected via discrete transformations.
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where u, d and u, d are the fields and the adjoined fields of the u and d quarks.
Since the current masses of the u and d quarks are very light compared to the
strength of the strong interaction, it seems appropriate to further simplify the
Lagrangian by making the approximation mu = md = 0. This approximation is
called the chiral limit and it indeed gives suitable results in most calculations. In
the chiral limit the QCD Lagrangian only consists of the terms

L = ui /Du+ di /Dd. (2.18)

We can see, that this Lagrangian has isospin symmetry, the symmetry of an
U(2) transformation mixing the u and d fields. Additionally, the Lagrangian for
massless quarks also contains no coupling between left- and right-handed quarks,
so the Lagrangian is actually symmetric under separate transformations for both
chiralities

(
u
d

)
L

→ UL

(
u
d

)
L

,

(
u
d

)
R

→ UR

(
u
d

)
R

. (2.19)

In above equation UL and UR both denote U(2) transformations. Using some
group theory we can further separate the U(2) symmetries into a SU(2) × U(1)
symmetry.4 With that the full symmetry group of the Lagrangian for massless
quarks is SU(2)L×SU(2)R×U(1)V ×U(1)A. The SU(2)L and SU(2)R symmetries
are called chiral symmetries, the U(1)V and U(1)A symmetries are the vector
and axial symmetries. We can take a look at the conserved currents of these
symmetries. To do this, we first define a quark doublet with the components

QL =

(
1− γ5

2

)(
u
d

)
, QR =

(
1+ γ5

2

)(
u
d

)
. (2.20)

Using these definitions we can further define the currents

jµL =QLγ
µQL, jµR = QRγ

µQR, (2.21)
jµaL =QLγ

µτaQL, jµaR = QRγ
µτaQR, (2.22)

where τa = σa

2
are the generators of the SU(2) group. If we add up the left- and

right-handed currents, we get the conserved baryon number and isospin currents
4In general it is possible to separate U(N) symmetries via U(N) → SU(N) × U(1),

since we can always find a homomorphism that maps SU(N) × U(1) to U(N), i.e.
f : SU(N)× U(1)→ U(N) : (S, eiϕ) 7→ eiϕS.
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jµ = QγµQ, jµa = QγµτaQ, (2.23)

which correspond to the chiral symmetry. We can subtract the currents in eq.
(2.21) to get the conserved currents of the vector and axial symmetries

jµ5 = Qγµγ5Q, jµ5a = Qγµγ5τaQ. (2.24)

The symmetries discussed in this section can be generalized from SU(2)× U(1)
symmetries to SU(3) × U(1) symmetries when including the s quark. Applying
the approximation of the chiral limit can still be justified when including the third
flavour of quarks as the mass of the s quark is also small compared to the scale
of the strong interaction. In fact the ratios of the light quark masses mu : md : ms

are estimated to be 1 : 2 : 40 [3].

Spontaneous breaking of chiral symmetry

Now that we have discussed spontaneous breaking of symmetries in general, we
will have a look at how the chiral symmetry of QCD is broken spontaneously. But
before we investigate the consequences of the broken symmetry, we will first ask us
why we might expect the chiral symmetries to be broken spontaneously. In QCD
quarks and antiquarks have a strong attractive interaction. When these quarks
are massless or have a very low mass, the energy required to create a new quark-
antiquark pair is small compared to the scale of the interaction between them.
Because of this we can expect the QCD vacuum to contain a condensate of quark-
antiquark pairs. These pairs have zero net momentum and angular momentum,
so they must have a non zero net chiral charge, pairing left-handed quarks and
right-handed antiquarks. This condensate is characterized by a finite vacuum
expectation value of the operator5

〈
QQ
〉
≡
〈
0
∣∣QQ∣∣ 0〉 = 〈0 ∣∣QLQR +QRQL

∣∣ 0〉 6= 0. (2.25)

We will further denote the value
〈
QQ
〉

simply as chiral quark condensate. A
non zero chiral quark condensate signals a spontaneously broken chiral symme-
try, which allows mixing of the two quark chiralities. This further allows quarks
to move through the vacuum whilst acquiring effective masses higher than their
current quark masses, even when they have zero mass in the QCD Lagrangian.
An important consequence of the chiral limit is Goldstone’s theorem, which states

5Our considerations follow those of [2].
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that for every spontaneously broken, continuous symmetry a massless boson field
arises.6 For QCD these bosons are, as we will see later, the pions. Experiments
show that the masses of the pions are in fact non zero, which means that the
current quark masses for u and d quarks cannot be zero in reality.

We can express the matrix element of the current jµ5a between the vacuum
and an on-shell pion as [4]

〈0| jµ5a(x)
∣∣πb(p)

〉
= −ipµfπδabe−ipx, (2.26)

with a and b being isospin indices and pµ is the momentum of the pion. In the
above equation, the value fπ is a scalar value of dimension MeV. It is the pions
electroweak decay constant, which we will calculate in this thesis in the Bethe-
Salpeter formalism. Furthermore, if we contract this equation with pµ from the
left we get

〈0| pµjµ5a
∣∣πb(p)

〉
= −ip2fπe−ipx = 0, (2.27)

since jµ5a is conserved in the chiral limit, i.e. pµjµ5a ≡ ∂µj
µ5a = 0. This means,

that an on-shell pion must satisfy p2 = −m2
π = 0, so they are indeed the massless

bosons predicted by Goldstone’s theorem. If we reintroduce the quark masses into
our Lagrangian, jµ5a is no longer conserved. As a result the pion mass is actually
non zero but satisfies the Gell-Mann-Oakes-Renner relation [4]

f 2
πm

2
π = −2mc

〈
QQ
〉
/Nf (2.28)

with Nf being the number of quark flavours. Extending our model to also contain
s quarks, additional scalar mesons occur from the breaking of the SU(3)× SU(3)
symmetry, as illustrated in fig. 2.2. In general, the number of occurring Goldstone
bosons is equal to the number of degrees of freedom lost due to the spontaneous
symmetry breaking.

2.4 The Dyson-Schwinger equations
The Dyson-Schwinger equations (DSE’s) are an infinite set of coupled integral
equations that describe the propagation of the particles of a quantum field theory.
In QCD there are DSE’s for the quark, gluon and ghost propagators as well as
the quark-gluon, gluon-gluon and ghost-gluon vertices. Since the full set of DSE’s

6Due to the importance of this theorem, a proof of it is given in section B.1.
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SU(2)× SU(2) π0,±
SU(2)

SU(3)× SU(3)
K0,±, K

0
, η

SU(3)

Figure 2.2: The boson occurring due to spontaneously broken chiral symmetry.
The bosons in the case Nf = 3 occur additionally to the pions.

generally can not be solved in closed form we will have to apply some form of
truncation to them. In this thesis we will use a truncation scheme, in which the
gluon-propagator and the quark-gluon vertex greatly simplify and do not interact
with any ghost propagators, so that we only have to take care of the quark DSE.

Due to the gluon-gluon interactions discussed at the end of section 2.2, a quark
can propagate in many ways. The elementary, one-particle irreducible interac-
tions in the Feynman diagrams are conveniently summarized as the quark self
energy Σ(p). In Feynman diagrams, the quark DSE is given in fig. 2.3.

= +

p− q
p

Figure 2.3: The quark DSE expressed in Feynman diagrams. Straight lines cor-
respond to a free quark propagator, lines with an arrow correspond to a dressed
quark propagator. Only one vertex is renormalized to avoid double counting.

If we translate the diagram into an explicit formula for the full, ”dressed” quark
propagator, we get [5]

S(p) = S0(p) + S0(p)Σ(p)S(p), (2.29)

where S0(p) is the free quark propagator and S(p) is the dressed quark propagator.
If we write out the sum in full and express it as a geometric series, we get an
equation for the inverse quark propagator

S−1(p) = S−1
0 (p)− Σ(p). (2.30)

This equation, known as the gap equation, can also be expressed in Feynman
diagrams, see fig. 2.4. For a derivation of the gap equation, B.2 can be consulted.
The free quark propagator is a two point Green’s function. If we ignore color,
flavour and spin indices, it is given by
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S0(p) =
(
mc + i/p

)−1
, (2.31)

where mc is the current quark mass. We can get the full propagator by dressing
the free propagator with dressing functions A(p2) and B(p2) via [6]

S(p) =
(
B(p2) + i/pA(p

2)
)−1

. (2.32)

If we further introduce the quark mass function M(p2) = B(p2)/A(p2), the dressed
propagator can be written as

S(p) = A−1(p2)
−i/p+M(p2)

p2 +M2(p2)
. (2.33)

Later we will interpret the value of M(p2) as the effective quark mass. Plugging
the expression for the free propagator together with the full quark self energy [7]
back into the eq. (2.30) yields the explicit form of the gap equation

S−1(p) = i/p+mc + g2
4

3

∫
d4q

(2π)4
γµS(q)Γν(q, p)D

µν(p− q), (2.34)

where g is the coupling strength already introduced in section 2.2, Dµν(p− q) de-
notes the dressed gluon propagator and Γν(q, p) is the full quark-gluon vertex. The
factor 4/3 stems from the trace of the color Gell-Mann matrices. The expression
for the quark self energy can be obtained using the Feynman rules of QCD, i.e.
the emission of the gluon at the point µ at a bare vertex corresponds to a γµ, the
fermion line corresponds to the full quark propagator S(q), the absorption at the
dressed vertex at point ν corresponds to the full quark-gluon vertex Γν and finally
the boson line gives the gluon propagator Dµν . Since the momentum of the gluon
is not fixed by external conditions, it can take any possible value, which is realized
by the integration.

−1

=

−1

-

p− q

Figure 2.4: The gap equation expressed in Feynman diagrams. Compared with
the DSE the graphs here are one-particle irreducible and consist of no external
propagators.
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2.5 The Bethe-Salpeter equation
To determine the properties of bound states of quarks and antiquarks, in our case
mesons, we need to consult a more complicated formalism, since we also need to
consider all possible interactions between the quarks. This formalism obviously
has to contain the solutions of the quark DSE, but it also has to satisfy the Ward-
Takahashi identities, which will be discussed in section 2.6. The formalism used
in this thesis is the Bethe-Salpeter formalism. The idea behind this formalism is,
to start with the exact equation for scattering processes in QCD. The interaction
is determined by a 4-point Green’s function, the full propagator G, which can
be expressed by a bare propagator and the scattering T -Matrix, describing the
interactions between the quarks, as [8]

G = G0 +G0TG0. (2.35)

The scattering T -Matrix satisfies a Dyson equation itself

T = K +KG0T, (2.36)

where K is the scattering kernel. We can choose the ansatz

T ∝ ΓΓ

P 2 +m2
, (2.37)

in which we introduced the Bethe-Salpeter amplitude (BSA) Γ and its conjugated
amplitude Γ. Using the fact, that in this ansatz T diverges for on-shell particles
with the energy-mass-relation P 2 = −m2, eq. (2.36) simplifies to

Γ = KG0Γ. (2.38)

For a full derivation, section B.3 can be consulted. This equation is called the
Bethe-Salpeter equation. It is an eigenvalue equation of the matrix KG0 with the
eigenvalue 1. Thus, every state Γ0 which satisfies eq. (2.38) has the potential to
represent a physical state of the meson. The BSE can be written as an explicit
integral equation [9]

[
Γj(p, P )

]
tu
=

∫
d4q

(2π)4
Krs

tu (q, p, P )S(q+)[Γ
j(q, P )]srS(q−). (2.39)
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Γ
= K

Γ

Figure 2.5: The Bethe-Salpeter equation in Feynman diagrams. The two quark
propagators denote the quark and antiquark respectively, the kernel K contains
each possible interaction between the quarks.

In this equation, p is the relative and P is the absolute momentum of the meson.
The indices j, r, s, t and u are color, flavour and Dirac indices. The momenta of the
quarks are given by q+ = q+ ηP and q− = q+ (η− 1)P . The routing parameter η
ranges from 0 to 1 and determines, how much of the meson’s momentum is carried
by each constituents. As it only varies internal momenta of the meson, observable
quantities should be independent of η. The general solution of the BSE is given
by [10]

Γµ(p, P ) = −4g2

3

∫
d4q

(2π)4
Dµν(p− q)γµS(q+)Γµ(q, P )S(q−)Γ

qg
ν (q, p). (2.40)

We gave the quark-gluon vertex the additional label ”qg” to distinguish it from the
BSA. This integral equation can again be derived from the diagrammatic equation
displayed in fig. 2.5 using the Feynman rules of QCD. As in the gap equation,
only one quark-gluon vertex has to be dressed, while the other one corresponds to
the bare vertex factor γµ.

To solve the Bethe-Salpeter equation, we choose the ansatz to express the
amplitude as a linear combination of the underlying Dirac structures, which can
be taken from [11]

Γ(p, P ) = γ5[1 · E(p, P )− i /PF (p, P )− i/pG(p, P )− i[/P , /p]−H(p, P )]. (2.41)

After applying a truncation scheme, we will be able to solve the BSE algebraically
using this ansatz.

As an abstract, mathematical quantity from which physical quantities should
be determined, the BSA has to have a well defined normalization condition, since
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q+

q−

Γ Γ

Figure 2.6: The normalization condition (2.42) expressed as a Feynman diagram.

multiplying it by a arbitrary complex number keeps the BSE invariant.7 The
normalization condition reads

Γ

[
dG0

dP 2
+G0

dK

dP 2
G0

]
Γ = −1, (2.42)

which is obtained by taking the derivative of G. If the scattering kernel K is
independent of P , the second term vanishes. If we further split G0 into two 2-point
Green’s functions, the normalization condition simplifies to

Γ

[
dG(2)G(2)

dP 2

]
Γ = −1. (2.43)

This condition can also be expressed in Feynman diagrams, as seen in fig. 2.6. We
can, again using the Feynman rules of QCD, translate this into an explicit integral
equation

1 =
d

dP 2
tr

∫
d4q

(2π)4
Γ(q,K)S(q+)Γ(q,K)S(q−). (2.44)

Note, that the inner momentum q needs to be integrated over and due to the
implicitness of the equation, the trace over all color, flavour and Dirac indices
needs to be taken. With the properly normalized BSA we are able to calculate the
pion’s leptonic decay constant. To do this, we express eq. (2.26) in momentum
space, which yields [12]

δijfπPµ = Z2

∫
d4q

(2π)4
tr

[
σi

2
γ5γµS(q+)Γ

j(q, P )S(q−)

]
, (2.45)

with Z2 being a renormalization constant.
7This is analogous to classical quantum mechanics, where the solutions of the Schrödinger

equation H |ψ〉 = i∂t |ψ〉 have to be normalized by the condition 〈ψ|ψ〉 = 1.
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2.6 Truncation schemes
In general, solving the full set of Dyson-Schwinger equations of QCD is not pos-
sible in closed form. Because of this, truncation schemes have to be applied to
approach challenging problems like the dynamic mass generation of quarks and
mesons. One possible truncation is to apply simplifications to the quark-gluon
vertex. This simplifies the relevant equations to ones containing only terms that
can be handled more easily. However, these truncation schemes can not be chosen
arbitrary, but have to satisfy certain identities, the Ward-Takahashi identities. In
our case, the axial vector Ward-Takahashi identity (AVWTI) is of particular in-
terest, as it ensures, that the effects of the spontaneously broken chiral symmetry
are preserved. It provides a connection between the interactions used in the quark
DSE and the meson BSE. In its explicit form the AVWTI is given by

γ5Σ(q−) + Σ(q+)γ
5 = −

∫
K(p, q, P )(γ5S(q−) + S(q+)γ

5). (2.46)

We see, that the AVWTI indeed gives a relation between the quark self energy Σ
and the scattering kernel K, which is part of the meson BSE. If we violate this
relation in our choice of truncation schemes, problems will arise.

2.6.1 The Rainbow-Ladder truncation
The truncation scheme used in this thesis is an often used one, called the Rainbow-
Ladder truncation. The idea behind it is to replace the full quark-gluon vertex by
a simplified one. This allows the quark to simply emit one gluon and absorb it
equivalently. This means, that both the vertex, at which the gluon is emitted, and
the one, at which it is absorbed again, are both described as a bare vertex. While
one gluon is emitted and propagating, more gluons may be emitted and absorbed.
Additionally, we use a simplified contact interaction model, which not only ensures
that the emitted gluons propagate freely, not interacting with each other, but also
further simplifies the gluon propagator. The name stems from the fact that after
applying the truncation scheme, the remaining Feynman diagrams in the quark
DSE look like rainbows, which are getting bigger for higher order terms, see fig.
2.7.

Effects on the quark DSE

As mentioned in section 2.4, the gluon propagator and the quark-gluon vertex also
obey their own set of Dyson-Schwinger equations and are accordingly complicated
as well. This is where the Rainbow-Ladder truncation leads to simplifications. In
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general, the quark-gluon vertex can be expressed with the aid of three independent
four vectors and the four Dirac structures [7] introduced in section 2.5, such that

Γµ ∈ {γµ, pµ, qµ} ⊗ {1, p, /q, [/p, /q]−}. (2.47)

In Rainbow-Ladder truncation, we only consider the first term γµ ⊗ 1, such that
the quark-gluon vertex is given by a bare vertex factor, i.e.

Γµ(q, p) = γµ. (2.48)

The full gluon propagator in Landau gauge is then given by [8]

Dµν(k) =

(
δµν − kµkν

k2

)
Z(k2)

k2
. (2.49)

We simplify the interaction further by first assuming the function Z(k2) to be
constant. Furthermore we choose a contact interaction of the form [10]

Dµν =
δµν

g2m2
G

, (2.50)

where mG is the gluon mass scale, which quantifies the interaction strength. Since
the gluon propagator is dependent on the value of mG, we expect the effective
quark mass to also depend on it. If we plug the truncated quark-gluon vertex and
gluon-propagator into the gap equation (2.34), it simplifies to

S−1(p) = i/p+mc +
4

3m2
G

∫
d4q

(2π)4
γµS(q)γ

µ, (2.51)

which can be solved iteratively after further simplifications using the relations of
the gamma matrices mentioned in section A.2.

= + + +…

Figure 2.7: The quark propagator in Rainbow-Ladder truncation. The high order
diagrams closely resemble rainbows, which inspired the name of the truncation
scheme.
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Effects on the Bethe-Salpeter equation

The part of the Bethe-Salpeter equation, that will be affected by the truncation,
is the scattering kernel K, which describes how gluons are exchanged between the
constituents of the meson. In order not to violate the AVWTI, the gluon propaga-
tor and quark-gluon vertex used in the quark DSE have to be used here, too. This
leads to a significant simplification of the possible interactions to the exchange of
only one freely propagating gluon at once between the quarks. Iterating the BSE
with these approximations leads to Feynman diagrams that look like a ladder with
steps made of gluons (fig. 2.8).

Plugging the truncated quark-gluon vertex Γµ = γµ and the gluon propaga-
tor with the contact interaction Dµν = δµν/g2m2

G into the integral form of the
BSE (2.40) yields

Γµ(P ) = − 4

3m2
G

∫
d4q

(2π)4
γνS(q+)Γ

µ(P )S(q−)γν . (2.52)

Since we used a simple form for the gluon propagator, that does not depend on the
relative momentum p, the Bethe-Salpeter amplitude itself does no longer depend
on p. Thus, our ansatz (2.41) simplifies, as the last two terms vanish. So the
Bethe-Salpeter amplitude only has two degrees of freedom, E and F , that need to
be determined, and is given by [10]

Γ(P ) = γ5
[
iE(P ) +

/P

M
F (P )

]
. (2.53)

The two additionally inserted factors i and 1/M are convention dependent, so that
the values for the BSA might differ source-by-source, but as long as observable

Γ

Figure 2.8: The Bethe-Salpeter amplitude in Rainbow-Ladder truncation after
three iterations of eq. (2.38).
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quantites, such as the mass mπ of the pion, are the same, this does not matter.
Plugging eq. (2.53) into eq. (2.52), leads to the eigenvalue equation

(
κEE κEF

κFE κFF

)(
E
F

)
= λ(mπ)

(
E
F

)
, (2.54)

which can be solved algebraically. For a derivation of this equation, section B.3
can be consulted. To determine the correct mass of the pion, we have to vary
it until the eigenvalue λ(mπ) is equal to 1. The 2 × 2 matrix in above equation
still depends on the four-momentum P µ =

(
i
√
m2

π + ~p 2, ~p
)

, so that in principle
the mass of the pion might still depend on the three-momentum ~p. Weather this
is indeed the case will be investigated later, when we solve the BSE in a moving
frame.



Chapter 3

Pion in its restframe

3.1 Solving the gap equation

3.1.1 Mathematical approach
As we have already seen in section 2.6, the gap equation becomes significantly
simpler in Rainbow-Ladder truncation using the contact interaction (2.50)

S−1(p) = i/p+mc +
4

3m2
G

∫
d4q

(2π)4
γµS(q)γ

µ. (3.1)

To solve this equation, we plug our ansatz (2.32) into it to obtain

i/pA(p
2) +B(p2) = i/p+mc +

4

3m2
G

∫
d4q

(2π)4
γµ
−i/qA(q2) +B(q2)

q2A2(q2) +B2(q2)
γµ. (3.2)

Using the relations of the gamma matrices, we can solve this equation for A(p2)
and B(p2). A full derivation is given in section B.2. Here we will only recall the
resulting equation for the effective quark mass M(p2) = B(p2)/A(p2). For A we
obtained the result A(p2) = 1. As a consequence the effective quark mass becomes
independent of the momentum p and is given by

M = mc +
1

3m2
Gπ

2

∞∫
0

ds
sM

s+M2
. (3.3)

If we take a closer look at the asymptotic behaviour of the function inside the
integral, we see, that it does not converge to zero as x goes to infinity, but rather

25
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lim
x→∞

xM

x+M2
=M 6= 0. (3.4)

A necessary condition for an improper integral to converge is, that the function,
which is integrated, has to go to zero almost everywhere as x goes to infinity. Since
this is not the case for our function, the integral in equation (3.3) diverges. This
is a typical phenomenon in quantum field theories, that has to be worked around.
The procedure of modifying divergent integrals to get meaningful results is called
regularization. The simplest way to modify the divergent integral is to introduce
a hard cutoff parameter Λ, such that we replace the improper integral with

∞∫
0

ds
sM

s+M2
−→

Λ∫
0

ds
sM

s+M2
. (3.5)

Since the function we are integrating over is bound in any compact interval q ∈ [0,Λ],
this expression is well defined. This method has the advantage of being easy to
implement and giving good results for the effective quark mass. The problem of
this method is, that it violates the integrals invariance under translations. This
will cause some issues when solving the pion BSE later. Therefore, we have to
find a different approach to regularization. The next idea would be to modify the
integrated function itself in such a way, that it goes to zero fast enough to ensure
convergence of the integral. To do this, we use the identity

1

s+M2
=

∞∫
0

dτe−(s+M2)τ . (3.6)

Now we can modify this integral by replacing the limits of integration with finite
values to properly regularize the problem [13]

∞∫
0

dτe−(s+M2)τ →
τ2ir∫

τ2uv

dτe−(s+M2)τ =
e−(s+M2)τ2uv − e−(s+M2)τ2ir

s+M2
, (3.7)

where τuv and τir are ultraviolet and infrared regulators respectively. With these
regulators, the function decays exponentially for big values of s so it becomes
integrable in R+. In this thesis we will calculate the effective quark mass with
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both regularizations once. We solve equation (3.3) iteratively using numerical
integration, the Gauß-Legendre method in particular.1 In a first calculation, its
dependence on the current quark mass mc will be analyzed, in a second calculation
we will investigate the effects of a varying gluon mass scale mG on the effective
quark mass at a fixed value of mc.

The results of these calculations can be used to calculate the chiral quark
condensate

〈
QQ
〉
, which has already been introduced in section 2.3.2. The value

of
〈
QQ
〉

can be determined by [8]

〈
QQ
〉
= NNc

∫
d4q

(2π)4
tr(Schiral(q)), (3.8)

where Schiral(q) is the quark propagator in the chiral limit mc = 0 and N = Z2Zm

is a renormalization constant. An explicit calculation yields a relation2 between〈
QQ
〉
, M and mc

〈
QQ
〉
/N =

9

4
m2

G(M −mc). (3.9)

Using this relation we will be able to calculate the chiral quark condensate and if
its value is non vanishing, we know that chiral symmetry is broken spontaneously.

3.1.2 Numerical results
To get the relation M(mc), equation (3.3) has been iterated for 1000 equidistant
values of mc in the interval [0, 10] until an accuracy of 10−7 is reached.3 A gluon
mass scale of mG = 132.0MeV was used, together with a hard ultraviolet cutoff
parameter of Λ = 873MeV. The results are plotted in figure 3.1a.

One sees, that for light quarks the effective masses are way bigger than their
current masses. The ratio between the effective and current quark masses is also
plotted in figure 3.1b. Especially for very light quarks, such as the u and d quarks4,
the effective masses outweigh the current masses by a factor of over 100. This
correlates well with the example given in the introduction, the proton, where about
99% of the mass is generated dynamically. We have to keep in mind though, that
we only included light quarks in our calculations and left the heavier quarks, such
as the c, b and t quarks with masses up to over 150 GeV for the t quark [1].

1All numerical methods and tools used in this thesis are explained in section C of the appendix.
2For a derivation of this relation, B.4 can be consulted.
3If not explicitly stated otherwise, all masses, momenta and energies are given in MeV.
4mu ≈ 2.3MeV, md ≈ 4.8MeV
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(a) The relation M(mc) with mc ∈ [0, 10]MeV.

(b) The ratio M/mc plotted on a logarithmic scale.

Figure 3.1
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An astonishing result is that even in the chiral limit the quarks can dynamically
generate an effective mass of about 355.18MeV, even though their current mass
is zero. This raises the question how the mass is generated in the first place.
Searching for an answer one may vary the interaction strength and research the
behaviour of M(mG). To be more precise, the value for m−2

G , as it appears in
eq. (3.3), is varied in an interval of [0, 70]GeV−2. In the previous calculation its
value was fixed to a value that reproduces the experimental values for the pions
properties, as we will see when discussing the results of the BSE. In figure 3.2a,
the results of this calculation are plotted once for the chiral limit and once for a
fixed value of mc = 7.8MeV.

The behaviour of the effective quark mass is very interesting. In the chiral limit,
the effective mass is zero for small values ofm−2

G , i.e. for largemG. This observation
holds true up to a critical value of the gluon mass scale of m−2

G ' 38.9GeV−2, which
corresponds to a critical value for mcrit

G ' 160.3MeV. For bigger m−2
G , the effective

quark mass harshly increases, even though the current mass is still zero. If we
consider a non vanishing current mass of mc = 7.8MeV, the effective quark mass
approaches the current mass in the limit mG →∞. In contrast to the chiral limit
though, the effective mass slightly increases for increasing value of m−2

G , that are
still smaller than the critical value of 39 GeV−2. At the critical point the effective

(a) The effective quark mass plotted
against the gluon mass scale. The upper
plot is for mc = 7.8MeV, the lower is for
the chiral limit.

(b) The chiral quark condensate plotted
against the gluon mass scale. For simplic-
ity’s sake, the renormalization constant N
has been omitted.

Figure 3.2: Behaviour of the effective quark mass (left panel) and the chiral quark
condensate (right panel) under variation of the interaction strength. One can see,
that the values for both harshly start to increase at m−2

G ≈ 38.9GeV−2.
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mass also starts to increase faster, indicating that the majority of their mass is
then also generated dynamically. This means, that for finite current quark masses,
mass is already generated dynamically for small interaction strengths, while in the
chiral limit the behaviour of the effective mass can be described as

{
M = 0, for mG ≥ mcrit

G

M > 0, for mG < mcrit
G .

(3.10)

This strange property raises the idea that something special happens at the critical
interaction strength mcrit

G . In search of this ”special thing”, the value of the chiral
quark condensate

〈
QQ
〉

has been calculated for varying interaction strengths. The
results are shown in the right plot in fig. 3.2b. The chiral quark condensate indeed
shows the same behaviour as the effective quark mass in the chiral limit. If we
recall, how the chiral quark condensate was introduced in section 2.3.2, it becomes
clear that the non vanishing value of

〈
QQ
〉

for mG < mcrit
G is an indicator, that the

chiral symmetry of QCD is broken spontaneously. This leads to the appearance
of a condensate in the QCD vacuum, which causes to quarks to generate mass
dynamically. If we try to find an analogy to statistical physics,5 it would be that
this spontaneous symmetry breaking represents a second order phase transition
between the two phases chiral symmetric and not chiral symmetric. As stated
earlier, we first set mG = 132MeV, so that the experimental value for the pions
mass and decay constant can be reproduced later. In other words, the value of
mG = 132MeV can be interpreted as an initial condition of the universe, which
sets the hadronic masses to what they actually are, according to experiments.
One can easily think of a hypothetical, alternative universe, in which the value
for mG is higher than mcrit

G . In this universe dynamic mass generation would not
play as much of a role, so that the masses of hadrons are merely the sum of their
constituents’ masses. This might seem like a meaningless thought, but it is indeed
not entirely clear, if fundamental physical constants actually have been constant
for the past 13.8 billion years [14].

The fact, that the experimental value of mG is smaller than the critical value
mcrit

G supports the notion, that chiral symmetry is broken spontaneously in QCD.
Because of this, we expect massless Goldstone bosons to appear, in particular the
pions as they are the simplest fundamental bound states of u and d quarks allowed
by (2.12). The fact, that the light quarks actually do have a mass can be brought
in as a perturbation, as they still are small compared to their effective masses.
Thus the effect on the pions mass should be small too.

5Many phenomena of quantum field theories have analogous phenomena in statistical physics,
as pointed out in [2].
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3.2 Solving the Bethe-Salpeter equation

3.2.1 Mathematical approach
When the Bethe-Salpeter equation was introduced in section 2.5 we have seen,
that it is an eigenvalue equation to the eigenvalue 1. After applying the Rainbow-
Ladder truncation scheme onto the BSE, it simplifies to an eigenvalue equation of
a 2× 2 matrix

(
κEE κEF

κFE κFF

)(
E
F

)
=

(
E
F

)
. (3.11)

The matrix elements of the κ-matrix have been derived explicitly in section B.3.
We will just recall the results here

κEE =4N
∫ ∞

d(q, z, y)
(q+ · q−) +M2

(q2− +M2)(q2+ +M2)
(3.12)

κEF =− 4m2
πN

∫ ∞
d(q, z, y)

1

(q2− +M2)(q2+ +M2)
(3.13)

κFE =2M2N
∫ ∞

d(q, z, y)
1

(q2− +M2)(q2+ +M2)
(3.14)

κFF =− 2N
∫ ∞

d(q, z, y)
M2 −m−2

π (m2
π(q+ · q−) + 2(q+ · P )(q− · P ))

(q2− +M2)(q2+ +M2)
. (3.15)

Analogous to the integral in equation (3.3), the integral in all of the matrix ele-
ments have an ultraviolet divergence. Therefore they have to be regularized, too.
The first idea would be to reuse the hard ultraviolet cutoff parameter used for the
calculation of the effective quark masses. This would replace the upper limit of
integration by the parameter Λ, i.e.

∫ ∞
d(q, z, y) −→

∫ Λ

d(q, z, y). (3.16)

To some extend this choice might seem reasonable, but we will see, that it actually
produces nonphysical results. Therefore, the alternative way of regularizing the
integral by giving the integrated function an exponential decay is more adequate.
As the pion consists of two quarks with their propagators both contributing to the
Bethe-Salpeter amplitude, it is possible to replace either of them by the regularized
propagator
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1

(q2− +M2)(q2+ +M2)
−→ e−(q2±+M2)τ2uv − e−(q2±+M2)τ2ir

(q2− +M2)(q2+ +M2)
. (3.17)

We will investigate the effects of the different approaches to regularization as well
as the effect on regularizing each quark individually in section 3.2.2.

Figure 3.3 shows a Feynman diagram of the Bethe-Salpeter equation with the
important momenta explicitly depicted. The momenta q+ and q− have been in-
troduced in section 2.5 and satisfy the relation q+ − q− = P . As we are now
only concerned with calculating the pions properties in its rest frame, the total
momentum is P = (imπ, 0, 0, 0) and satisfies the energy-mass relation of on-shell
particles P 2 = −m2

π. This makes one of the angular integrals trivial, giving an
additional factor of 2. The routing parameter η only quantifies, how much of the
pions momentum is carried by each quark individually and does not directly vary
the total momentum. Thus we expect the physics not to change when modifying η.

Before solving the BSE for the amplitude (E,F ), we have to determine the
pions mass. To do this we calculate the eigenvalue of the κ-matrix for different
values of mπ. Once the eigenvalue is equal to 1, mπ is equal to the physical
pion mass. The correct value of mπ is found using the false position method,
see sec. C, to find the zeros of f(mπ) = λ(mπ) − 1 with λ being the eigenvalue.
Since only one of the eigenvalues of the κ-matrix is relevant, the eigenspace in
which the Bethe-Salpeter amplitude exists, is only a one dimensional subspace
Ω ⊂ R2. Normalizing the amplitude properly using the normalization condition
(2.42) makes the eigenspace collapse down to a well defined tuple (E,F ) ∈ R2.
Bringing the normalization condition into an easier to compute form, we obtain
the equation

Γ
=

q+

q−

PΓ

Figure 3.3: The Bethe-Salpeter equation with the relevant momenta.
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1 =
1

3Pπ3

d

dP

∫ Λ

d(q, z)

{
[−M2 − (q+ · q−)]E2 − 2(p ·K)EF

+
[
K2 +M−2(2(q+ ·K)(q− ·K)−K2(q+ · q−))

]
F 2

}
·
[
(q2− +M2)(q2+ +M2)

]−1
.

A derivation of this equation can be found in section B.5. To clarify the notation,
K is equal to the total momentum P , but is denoted with a different letter to
highlight that the derivative d/dP is not taken with respect to K. Before solving
this equation, we first use the eigenvalue condition (3.11) to find the ratio between
E and F

α :=
F

E
=

1− κEE

κEF

(3.18)

and then rewrite the components of the amplitude as E = 1/N and F = α/N with
a normalization constant N . Using these notations, the normalization condition
is only an equation to determine N . The differentiation with respect to P can
either be done analytically or numerically using the method explained in section
C. With a properly normalized amplitude, the pions leptonic decay constant can
be calculated. Therefore, we bring eq. (2.45) into an easier to handle form6 and
get

fπ =
3

π3

∫ Λ

d(q, z)
ME − (M−1P−2(2(q+ · P )(q− · P )− P 2(q+ · q−)))F

(q2− +M2)(q2+ +M2)
. (3.19)

With the resulting values for mπ and fπ we are furthermore able to test, if
the Gell-Mann-Oakes-Renner relation (2.28) holds true in the Rainbow-Ladder
truncation with the contact interaction model or if the huge simplifications cause
a violation.

3.2.2 Numerical results
Before solving the Bethe-Salpeter equation for the Bethe-Salpeter amplitude, we
calculate the correct pion mass to ensure the eigenvalue in the BSE is equal to
one. The results for the pion mass for current quark masses varying in the range
mc ∈ [0, 10] is shown in figure 3.4. The calculations have been done for two different

6The derivation is completely analogous to the one done in section B.3.
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Figure 3.4: The pion mass as a function of the current quark mass.
Upper graph: Symmetric momentum routing η = 0.5.
Lower graph: Antisymmetric momentum routing η = 1.0.

momentum routings using the hard cutoff parameter to regularize the integrals.
The first one is the symmetric case η = 0.5, in which the momentum of the pion
is equally split between the constituents. The second one is the asymmetric case
η = 1.0, in which one quark carries the full momentum. Even though the routing
should not influence the physics of our system, the pion mass is higher in the
symmetric case with the difference increasing for higher current quark masses. In
fact, the behaviour of the pion mass under variation of the routing parameter
closely resembles a parabola. This can be seen in figure 3.5a. This occurs due to
the invariance under translations of the integral being violated by the hard cutoff
parameter.

To solve this problem, we apply the alternative way of regularizing the inte-
grals occurring in the BSE, which has been introduced in section 3.1.1. To find
proper values for the infrared and ultraviolet regulators τir and τuv, we first use this
method of regularization to calculate the effective quark mass. It turns out, that
the quark masses for both methods match for the values τuv = 1.10562 · 10−3 MeV−1

and τir = 10−5 MeV−1. For convenience, the inverse values of the regulators Λir,uv

are often used. In our case they are Λir = 105 MeV and Λuv = 904.466MeV. While
the quark mass is sensitive for variations in Λuv, variations in Λir do not change
the result as much, as long as it is reasonably large. The same calculations to
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(a) The pion mass under variation of the
routing parameter η for mc = 7.8MeV.
The curve shows parabolic behaviour
within an error margin of about 0.5%.

(b) Using the hard cutoff the decay con-
stant depends on the routing parameter.
The upper graphs is for symmetric, the
lower for antisymmetric routing.

Figure 3.5: Left panel: The pion mass as a function of η. Right panel: The leptonic
decay constant as a function of mc in both momentum routings.

determine mπ as a function of mc have been repeated with the new regulators.
The results are plotted in figure 3.6b. With the changed method of regularization,
the mass becomes independent of the momentum routing. It does also not change
the results, which of the two quark propagators is being regularized.

In the chiral limit the pions indeed have zero mass, as Goldstone’s theorem
predicted. For small quark masses the mass of the pion increases harshly and it
continues to increase for higher quark masses. We can see, that the mass of the
pion outweighs the constituents mass by more then a factor of 18 for high current
quark masses. Close to the chiral limit this factor is even bigger. The experimental
value for the mass of a charged pion, about 140 MeV, is obtained for a quark mass
of mc = 5.92MeV. This is not equal to the well known experimental values for
the u and d quarks, but this can be seen as a result of the simplifications made in
section 2.6. The quantities we use in the equations should be chosen to reconstruct
the experimental values. If we were to consider a more general approach to the
theory with less simplifications, it is possible to get closer to the experimental
values [3].

Another interesting thing to look at is the behaviour of the pions under a vary-
ing interaction strength. Since pions are a bound state of a quark-antiquark pair
held together by the strong interaction, it seems natural to expect its properties
to change if the coupling strength changes too. To test this hypothesis we calcu-
lated the pion’s mass for various m−2

G up to a value of 61 GeV−2. The results are



CHAPTER 3. PION IN ITS RESTFRAME 36

(a) We only find a solution for mπ for for
mG . 133.1MeV, for higher values of the
interaction strength the pion mass quickly
increases.

(b) mπ(mc) with the alternative regular-
ization. The resulting pion mass is inde-
pendent of the routing used. It does not
matter, which propagator is regularized.

Figure 3.6: Left panel: The pion mass as a function of m−2
G . Right panel: The pion

mass as a function of mc using the exponential regularization method.

shown in figure 3.6a For small values of m−2
G , or equivalently large values of mG,

no solution can be found for mπ. This means, that only for a quark gluon mass
scale of mG . 133.1MeV pions can form. Interestingly, this is beyond the point of
spontaneous breaking of chiral symmetry we found in section 3.1.2. This means
that pions occur only while a quark condensate is present in the QCD vacuum.
As soon as that critical value of the gluon mass scale is surpassed, the mass of
the pion increases rapidly. This happens since the binding energy of the quarks
increases and due to the equivalence of energy and mass, the pions mass increases
consequently.

Now that we calculated the correct pion mass, the BSE can be solved. If we
use the hard cutoff for regularization, we will again end up with results depending
on the chosen routing, as figure 3.5b shows. Therefore we will again be using the
alternative regulators. Evaluating equation (3.18) with the exponential regular-
ization gives us a ratio between the amplitudes of α = 0.11252. From this result
we can already derive, that E will be the leading amplitude that mainly defines
the physical properties. Taking the canonical normalization condition (2.44) into
account,7 we get the normalized amplitudes

7The derivative in the normalization condition has been taken numerically with ε = 10−6.
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E = 3.898 (3.20)
F = 0.439. (3.21)

With these results we obtain a leptonic decay constant of

fπ = 93.76MeV. (3.22)

Instead of calculating fπ explicitly, it is also possible to consult the Gell-Mann-
Oakes-Renner relation (2.28) to calculate fπ. Using our results for mc, mπ and〈
QQ
〉
, the GMOR relation results in fGMOR

π = 91.67MeV, which only deviates
from the explicit result by about 2.2%.



Chapter 4

Pion in a moving frame

The calculations done up to this point already have been done in previous theses
with similar results [15]. The following chapter contains investigations of the con-
tact interaction model in a moving frame of reference, which in this form, have
not been done yet.

4.1 Mathematical approach
Since the Bethe-Salpeter equation can be derived entirely from the covariant for-
mulation of QCD, the BSE is fully covariant, too. As a consequence the Bethe-
Salpeter amplitude Γµ transforms like a four-vector. This means that the ampli-
tude in a moving frame Σ′ is given by

(Γ′)
µ
= Λµ

νΓ
ν , (4.1)

where Λ is an element of the group of Lorentz transformations. Since all Lorentz
transformations satisfy the identity1

g = Λ · g · ΛT , (4.2)

the scalar product of two four-vectors is invariant under Lorentz transformations

a′µb
′µ = gµνa

′ νb′µ = Λρµgµν
(
ΛT
)
νσ
aρbσ = gρσa

ρbσ = aσb
σ. (4.3)

1Using the criteria for subgroups it is possible to show that all transformations satisfying this
identity do indeed form a group.
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Combining this with the pion’s on-shell condition PµP
µ = −m2

π we see that the
mass of the pion is Lorentz invariant. Our goal is to test, if this actually holds true
in our model with the contact interaction (2.50). We do this by simply boosting
the momentum four-vector P µ = (imπ, 0, 0, 0) along the P1 axis

P µ −→ P ′µ =

(
i
√
m2

π + P 2
1 , P1, 0, 0

)
. (4.4)

The boosted momentum still satisfies the on-shell condition2 P 2 = −m2
π. When

we plug this new momentum into the Bethe-Salpeter equation, most calculations
stay the same. The only thing that changes are the scalar products between the
total momentum four-vector P and the four-vector of the inner momentum, that
is integrated over. Those will contain an additional angular dependence which will
cause the integrals in the elements of the κ-matrix to become three dimensional
instead of two dimensional. So the full integrals given in equation (3.12) have to
be solved. In particular the scalar product becomes

q · P =iq
√
m2

π + P 2
1 cosψ + qP1 sinψ cosϑ

=iqz
√
m2

π + P 2
1 + qP1y

√
1− z2,

with the abbreviations z = cosψ and y = cosϑ used for the angular coordinates,
which have been introduced in section A.4 of the appendix.

4.2 Numerical results
The first thing we will test is how the mass of the pion behaves under Lorentz
transformation. The calculation has been done analogous to the rest frame case
with the difference of one additional variable, P1, that has to be taken into account.
Again, both methods of regularization have been applied to the integrals in the
κ-matrix.

Using the hard cutoff we calculated mπ as a function of the three-momentum
up to a value of P1 = 362MeV. The results are shown in figure 4.1. One can see
that for momenta up to about 342MeV the mass is invariant, as we expected. For
higher momenta the calculated mass harshly increases. This behaviour continues
up to a momentum of 362MeV, over which no meaningful results can be obtained.

2For convenience the prime at P ′ is suppressed from now on when it is clear that we are
working in the moving frame.
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Figure 4.1: The pion mass as a function of P1 in antisymmetric routing. For
momenta over 362 MeV no meaningful solution can be found. For momenta under
342 MeV the mass is constant.

Figure 4.2: λ − 1 as a function of mπ at a momentum of P1 = 360MeV. Within
the interval mπ ∈ [210, 260]MeV four different zeros can be found up to 36 MeV
apart.
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To investigate where this, obviously nonphysical behaviour, stems from, we
take a look at the behaviour of the eigenvalue occurring in the BSE. Figure 4.2
show the typical behaviour of eigenvalue after subtracting one for a varying pion
mass calculated at a momentum beyond 362 MeV. In the rest frame this function
has one root at the physical mass. At high momenta the curve starts fluctuating
heavily and crosses the mπ axis four times. This would mean that four different
masses can be found which lead to an eigenvalue of 1. Since the mass can only
have one value, it is not possible to draw any physical results from the calculations.

Trying to calculate the amplitudes with the hard cutoff does not result in
good results either. The ratio α shows similar behaviour as the mass, as seen in
figure 4.3a. This result means that the ratio between the amplitudes does not
change for momenta up to P1 ' 340MeV. After that point the significance of the
amplitude E increases harshly until again no meaningful results can be calculated
for P1 & 362MeV. When taking the normalization of the amplitude into account,
the significance of the results for high momenta become more questionable. The
results for the amplitudes E and F are shown in figure 4.3b. Their behaviour
for high momenta does not show any clear pattern. As a result, calculating the
leptonic decay constant from these amplitudes leads to similarly chaotic results.
This clearly is a nonphysical result, as the decay constant should not show such
behaviour but rather be Lorentz invariant as well.

(a) For high momenta the ratio drops,
meaning that E becomes even more sig-
nificant.

(b) Both amplitudes E (upper graph) and
F (lower graph) show no obvious pre-
dictable behaviour at high momenta.

Figure 4.3: Results for the BSA using the hard ultraviolet cutoff calculated in
antisymetric momentum routing. Left panel: The ratio α = F/E as a function of
P1. Right panel: The normalized amplitudes E and F as a function of P1.
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(a) The mass mπ (upper graph) and the
leptonic decay constant fπ (lower graph).

(b) The Amplitudes E (upper graph) and
F (lower graph).

Figure 4.4: Behaviour of the pion’s properties under Lorentz transformation cal-
culated using the exponential regularization. The properties stay invariant even
for high momenta.

As a conclusion we conduct that the contact interaction model fails to give
suitable results for high momenta, or equivalently high energies, when regularized
by the hard cutoff parameter.

The next logical step is to test, how well the model is able to describe high
momentum pions when the alternative approach to regularization is consulted. For
the mass of the pion, the results using the alternative regularization do not have
the problems of the hard cutoff. We are able to calculate the mass for way higher
momenta more consistently. For momenta over ∼ 725MeV the problem becomes
more of a challenge to the numerical methods used, but this does not manifest in
the results they produce.

The remaining properties of the pion are also found to be Lorentz invariant.
Both amplitudes (E,F ) and the leptonic decay constant fπ remain constant for
high momenta. This is what we expected and suits the real behaviour of physical
particle better then the results obtained with the hard cutoff.



Chapter 5

Conclusion and Outlook

In this thesis we saw that even simple models like the contact interaction can be
used to reproduce appropriate results for the physical properties of the lightest
quarks and mesons. We have also seen that seemingly minor changes, such as
changing the method of regularization used, are highly non trivial and might lead
to completely different behaviour. This can be seen in the calculation of the mass
of the pion, where the hard cutoff approach to regularization produced results that
still depended on the momentum routing which should not influence the physics
at all. When we solved the BSE in the moving frame this discrepancy manifested
even further with the hard cutoff approach violating fundamental principles like
the Lorentz invariance of the pion’s mass.

When we introduced the Rainbow-Ladder truncation in addition to the contact
interaction we assumed the gluon propagator and therefore the coupling strength
α(k2) to be constant. To obtain even better results one should use the full gluon
propagator in Rainbow-Ladder truncation [8]

Dµν(k) =
Z(k2)

k2

(
δµν − kµkν

k2

)
, (5.1)

introducing another dressing function Z(k2). Furthermore the quark-gluon vertex
can be dressed too via

Γµ = γµΓ(k
2), (5.2)

with yet another dressing function Γ(k2). These dressing functions are usually
combined to get

α(k2) ≡ g2

4π
Z(k2) · Γ(k2). (5.3)
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Quantity This thesis Maris-Tandy model Experiment
mu/d 5.92 3.74 2.5 – 5.5
mπ 139.6 140 139.6
fπ 93.8 91.7 92.1

Table 5.1: Comparison between the results of this thesis, results for a more accurate
model taken from [9] and experimental values taken from [1] and [16].

As tab. 5.1 shows, it is possible to get very close to the measured values using the
enhanced model. It is also possible to go beyond the Rainbow-Ladder truncation
by using lattice QCD methods.

The calculations done in the moving frame might seem trivial at first glance,
but indeed have their applications in recent research. Similar calculations are done
for instance to investigate electromagnetic form factors [17]. Another approach to
the moving frame solutions of the BSE is by using a Green’s function approach to
investigate the movement of the energy-plane poles of the Green’s function [18].

We conclude that even simple models like the contact interaction model are
able to describe the physics of the lightest quarks and mesons properly even in a
moving frame of reference for reasonable high momenta, compared to the mass of
the particles involved. The numerical methods might need some refinement at a
certain point when solving the equations for high momenta to still yield reasonable
results.



Appendix A

Conventions and relations

A.1 Euclidean conventions
In all of the calculations in this thesis Euclidean conventions are applied, which
means that the used metric is given by

gµν = g ν
µ = gµν =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (A.1)

With that, scalar products of four vectors can be written as

a · b =
3∑

µ=0

aµbµ ≡ aµb
µ = aµbµ. (A.2)

Associated with the use of an Euclidean instead of a Minkowski metric the four
momentum vector has been Wick rotated, such that

pµ :=

(
iE
~p

)
, (A.3)

where E =
√
m2 + |~p|2 is the Energy and ~p is the three momentum vector. In this

convention, a four vector p ∈ C×R3 is spacelike, if p2 > 0.
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A.2 Gamma matrices
The gamma matrices γµ (µ ∈ {0, 1, 2, 3, 5}), also sometimes called Dirac matrices,
are a set of matrices, that obey a certain (anti-)commutator algebra. One possible
representation of the matrices in Euclidean convention is via the Pauli matrices ~σ:

γ0 =

(
1 0
0 −1

)
, γj =

(
0 iσj
−iσj 0

)
, γ5 =

(
0 1

1 0

)
, (A.4)

where 1 = 12×2 and j ∈ {1, 2, 3}. In Euclidean metric the gamma matrices are
hermitian

γµ = (γµ)
† (A.5)

and obey the anticommutator rules of a Clifford algebra

[γµ, γν ]+ = 2δµν . (A.6)

Helpful relations
In some derivations in this thesis traces of products of gamma matrices are evalu-
ated. Therefore the following relations for products and traces of gamma matrices
are used frequently.

Products:

• (γ5)
2 = 1

• [γµ, γν ]+ = 2δµν

• γjγ
j = 4 · 1

• γµγνγ
µ = −2γν

• γµγνγργ
µ = 4δνρ · 1

• γµγνγργσγ
µ = −2γσγργν

Here again j and µ can take the value {1, 2, 3} and {0, 1, 2, 3} respectively. Addi-
tionally, the anticommutator of γ5 and every other gamma matrix vanishes.
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Traces:

• tr(γµ) = 0

• tr(γµγ
µ) = 16

• tr(γµγν) = 4δµν

• tr(γµγνγργσ) = 4(δµνδρσ + δµσδνρ − δµρδνσ)

• tr(γαγβ . . . γω︸ ︷︷ ︸
odd#

) = 0

A.3 Natural units
All equations and results in this thesis are calculated in a natural unit system. In
this system we use the fact, that the speed of light c and the Planck constant ~ are
finite value greater than zero, but the physics don’t change qualitatively if they
are exchanged for another value. So for convenience we set them to ~ = c = 1.
This also leads to the convenient situation that only powers of one unit, the unit
of energy, are required to describe physical quantities. Some important examples
for that are given in table A.1. When converting back to SI units it is sufficient
to multiply the value in natural units by a conversion factor, which is a power of
~ and c in SI units. For example to convert a distance x given in natural units to
SI units, it needs to be multiplied by a factor of ~c = 197.327MeV fm to be given
in terms of meters.

Quantity SI N.u. Conversion factor
Energy J eV1 1
Momentum kg m s−1 eV1 c−1

Mass kg eV1 c−2

Time s eV−1 ~
Length m eV−1 ~c
Energy density J m−3 eV4 (~c)−3

Table A.1: Natural and SI units for some important quantities and the correspond-
ing conversion factor f , such that ASI = fAn.u.
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A.4 Feynman slash notation
Another practical abbreviation is the so called Feynman slash notation. It stands
for a scalar product between a four vector and a vector containing the gamma
matrices γ0 to γ3,

/A := γµA
µ. (A.7)

Due to the fact, that the gamma matrices’ trace is zero, the trace of every slashed
vector is zero as well.

tr( /A) = 0 (A.8)

Since the gamma matrices form a Clifford algebra, see eqn. (A.6), the scalar
product of two slashed vectors is invariant

/A · /B = (A ·B) · 14×4. (A.9)

A.5 Integration in hyperspherical coordinates
Throughout this thesis there are several four-dimensional integrals to calculate.
For convenience they have been evaluated in hyperspherical coordinates, which
are a generalization of three-dimensional spherical coordinates. A general, four-
dimensional vector x = (x0, x1, x2, x3) can be expressed as

x0 =r cosψ (A.10)
x1 =r sinψ cosϑ (A.11)
x2 =r sinψ sinϑ cosϕ (A.12)
x3 =r sinψ sinϑ sinϕ (A.13)

Using this convention the Jacobi-determinant becomes

d4x = dϕdϑ sinϑdψ sin2 ψdrr3, (A.14)

so that the integral of a function of x can be rewritten as
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∫
R4

f(x)d4x =

2π∫
0

dϕ

π∫
0

dϑ sinϑ

π∫
0

dψ sin2 ψ

∞∫
0

drr3f(r, ψ, ϑ, ϕ). (A.15)

Introducing the abbreviations y = cosϑ and z = cosψ we can express eq. (A.15)
in terms of z and y

∫
R4

f(x)d4x =

2π∫
0

dϕ

1∫
−1

dy

1∫
−1

dz
√
1− z2

∞∫
0

drr3f(r, z, y, ϕ). (A.16)

In most equations in this thesis the function which is integrated over only depends
on two or three variables, so we further use the abbreviations

∫ Λ

d(r, z, y) →
1∫

−1

dy

1∫
−1

dz
√
1− z2

Λ∫
0

drr3 (A.17)

∫ Λ

d(r, z) →
1∫

−1

dz
√
1− z2

Λ∫
0

drr3 (A.18)



Appendix B

Derivations

B.1 Proof of Goldstone’s theorem
Consider a theory involving multiple scalar fields φa(x) and a Lagrangian of the
form

L(∂φ, φ) = T (∂φ)− V (φ), (B.1)

where T only depends on derivatives of the field and V only on the field itself. Let
φa
0 be a constant field, which minimizes V , such that

∂

∂φa
V

∣∣∣∣
φa=φa

0

= 0 (B.2)

If we calculate the Taylor expansion of V around φa
0 up to the second order, we

get

V (φ) = V (φ0) +
1

2
(φ− φ0)

a(φ− φ0)
b

(
∂2

∂φa∂φb
V

)
φ=φ0

. (B.3)

Note, that the linear term in the expansion vanishes, since its coefficient is identical
to the left hand side of eq. (B.2). Since φ0 is a minimum of V , the coefficients of
the quadratic term have to be greater or equal to zero. We can identify them as
the eigenvalues of a square matrix, which can be interpreted as the masses of the
fields

m2
ab :=

(
∂2

∂φa∂φb
V

)
φ=φ0

≥ 0. (B.4)
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To proof Goldstone’s Theorem, we have to show, that every spontaneously broken
continuous symmetry, i.e. every continuous symmetry of the Lagrangian, that is
not a symmetry of φ0, yields an eigenvalue of the mass matrix, that is equal to
zero. To do that, we start with a general, continuous symmetry transformation of
the form

φa → φa + ε∆a(φ), (B.5)

where ε is an infinitesimal parameter and ∆a(φ) is a function, that depends on all
of the fields. If we assume constant fields, all of the derivatives in the Lagrangian
vanish and only V has to be invariant under this transformation. If we apply the
transformation, we get

V (φa)
!
= V (φa + ε∆a(φ)), (B.6)

which is equivalent to

V (φa + ε∆a(φ))− V (φa) ≡ ε∆a(φ)
∂

∂φa
V (φ) = 0. (B.7)

In the last step we used the fact that ε is an infinitesimal parameter, which lead to
the derivative of V . If we now divide this equation by ε, differentiate with respect
to φb and evaluate the result at φ = φ0, we get

∂

∂φb

(
∆a ∂V

∂φa

)
φ0

=

(
∂∆a

∂φb

)
φ0

(
∂V

∂φa

)
φ0

+∆a(φ0) ·m2
ab = 0. (B.8)

Again, using eq. (B.2) we see, that the first term in this equation vanishes. Con-
sequently, the second expression has to be zero as well and since we did not apply
any further conditions to ∆a, mab has to be zero as well. With that, Goldstone’s
Theorem is proven. For a more general proof of the theorem and additional ex-
planations, [19] can be consulted.
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B.2 Derivation of the gap equation

B.2.1 Derivation of the general form
To derive the gap equation, we start with the quark DSE

S(p) = S0(p) + S0(p)Σ(p)S(p). (B.9)

If we iterate this equation we get the infinite series

S(p) =S0(p) + S0(p)Σ(p)S0(p) + S0(p)Σ(p)S0(p)Σ(p)S0(p) + . . .

=S0(p)

(
∞∑
i=0

(Σ(p)S0(p))
i

)
=S0(p)

1

1− Σ(p)S0(p)
.

In the last step we assumed the series to converge, so that we can apply the formula
for a geometric series. If we now take the inverse of both sides of the equation, we
end up with the desired equation

S−1(p) = (1− Σ(p)S0(p))S
−1
0 (p) = S−1

0 (p)− Σ(p). (B.10)

B.2.2 Calculation of the dressing functions
First, we want to calculate the function A(p2). To do this, we multiply eq. (3.2)
with −i/p from the left to obtain

p2A(p2)− i/pB(p2) = p2 − imc/p−
4

3m2
G

∫
d4q

(2π)4
γµ
/p/qA(q2) + i/pB(q2)

q2A2(q2) +B2(q2)
γµ. (B.11)

Taking the trace of this equation, all terms with an odd number of gamma matrices
vanish, so we are left with

4p2A(p2) = 4p2 − 16
4

3m2
G

∫
d4q

(2π)4
(pµq

µ)A(p2)

q2A2(q2) +B2(q2)
. (B.12)

We can explicitly evaluate the scalar product (pµqµ) by aligning the x0 axis of the
coordinate system of q with the direction of p. With that choice of coordinates,
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it can be expressed as pµqµ = pq cosψ, where ψ is the angle introduced in section
A.4. Together with the functional determinant, the integral in above equation
contains the term

π∫
0

dψ sin2 ψ cosψ = 0. (B.13)

Hence the full integral is equal to zero, so that we are left with

4p2A(p2) = 4p2 ⇐⇒ A(p2) ≡ 1. (B.14)

With this result the effective quark mass M is equal to the second dressing function
B(p2), so they will be used interchangeably. To calculate M , we start by directly
taking the trace of eq. (3.2):

4M = 4mc + 16
4

3m2
G

∫
d4q

(2π)4
M

q2 +M2
(B.15)

Dividing this equation by 4 results in an iterative equation for M . Since the
integral on the right-hand-side of this equation only depends on q and none of the
hyperspherical angles, the integration can be done trivially in three dimensions,
giving a factor of 2π2. Additionally the integrated function only depends on q2, so
we conveniently introduce the substitution

∫
dq · q3 −→ 1

2

∫
d(q2) · q2 ≡ 1

2

∫
ds · s.

After all, we end up with the final equation

M = mc +
1

3m2
Gπ

2

∞∫
0

ds
sM

s+M2
. (B.16)
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B.3 Derivation of the Bethe-Salpeter equation

B.3.1 Derivation of the general form
To begin with, we introduce the convenient abbreviations

T̃ := TG0, K̃ := KG0. (B.17)

Using the fact, that T obeys the Dyson equation, we can rewrite T̃ as

T̃ =TG0 = (K +KG0T )G0 (B.18)
=KG0 +KG0KG0 +KG0KG0KG0 + . . . (B.19)

=K̃

(
∞∑
n=0

(
K̃
)n)

(B.20)

=K̃
1

1− K̃
. (B.21)

Multiplying this equation with (1− K̃) from the left yields

K̃ =
(
1− K̃

)
T̃ = T̃ − K̃T̃ , (B.22)

which is equivalent to

T̃ = K̃ + K̃T̃ = K̃
(
1 + T̃

)
. (B.23)

If we now use our ansatz for T with a proportionality constant N , we get

N ΓΓ

P 2 +m2
G0 =KG0

(
1 +N ΓΓ

P 2 +m2
G0

)
(B.24)

=

(
K +KG0N

ΓΓ

P 2 +m2

)
G0 (B.25)

=
1

P 2 +m2

(
KG0NΓΓ

)
. (B.26)

In the last step we have used the fact, that for on shell particles P 2 = −m2.
Comparing the left-hand-side of the equation with the right-hand-side, we obtain
our desired result

ΓΓ = KG0ΓΓ ⇐⇒ Γ = KG0Γ (B.27)



APPENDIX B. DERIVATIONS 55

B.3.2 Derivation of the truncated form
To derive the matrix elements of the 2 × 2 matrix, we again start by using the
handy abbreviations

a := − 4

3m2
G

, b−1 := (q2− +M2)(q2+ +M2) (B.28)

Plugging the Dirac composition of the BSA into the equation (2.52), we get

γ5(iE +
/P

M
F ) = a

∫
d4q

(2π)4
bγµ(M − i/q+)γ

5(iE +
/P

M
F )(M − i/q−)γ

µ

To deal with the gamma matrices, we explicitly write every slashed four-vector
out and group the gamma matrices together. Doing so we get the expression

a

∫
d4q

(2π)4
b{E[(γµγαγ5γµ)Mqα+ − i(γµγαγ5γνγµ)qα+qν− + (γµγ

5γνγ
µ)Mqν−

+i(γµγ
5γµ)M2] + F [(γµγ

5γβγ
µ)MP β − (γµγαγ

5γβγνγ
µ)qα+q

ν
−P

βM−1

−i(γµγ5γβγνγµ)qν−P β − i(γµγαγ5γβγµ)qα+P β]} = γ5(iE + γβ
P β

M
F )

In this lengthy equation we can isolate E by multiplying with γ5/i and using the
identities mentioned in section A.2.

E − i /PF = a

∫
d4q

(2π)4
b

i
{E[2/q−M − 2/q+M − 4i(q+ · q−)− 4iM2] + F [2M /P

+4i(q− · P )− 4i(q+ · P ) + 2γνγβγαq
α
+q

ν
−P

βM−1]

The last step is to take the trace of both sides of this equation and divide the
result by 4, so that we get

E = 4a

∫
d4q

(2π)4
b
([
− (q− · q+)−M2

]
E + [(q− · P )− (q+ · P )]F

)
. (B.29)

To derive an analogous expression for F , we multiply the lengthy equation from
the left with −M /Pγ5/m2

π and use the relation P 2 = −m2
π:
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−a
∫

d41

(2π)4
bM

m2
π

{E[(γργ5γµγαγ5γµ)Mqα+P
ρ + (γργ

5γµγ
5γνγ

µ)Mqν−P
ρ

+i(γργ
5γµγ

5γµ)M2P ρ − i(γργ5γµγαγ5γνγµ)qα+qν−P ρ]

+F [−i(γργ5γµγαγ5γβγµ)qα+P βP ρ − (γργ
5γµγαγ

5γβγνγ
µ)M−1qα+q

ν
−P

βP ρ

+(γργ
5γµγ

5γβγ
µ)MP βP ρ − i(γργ5γµγ5γβγνγµ)qν−P βP ρ]} = −iM

/P

m2
π

E + F

In analogy to the derivation of the equation for E, we now take the trace and
divide the result by 4. After cleaning up all the gamma matrices, we are left with:

F = a

∫
d4q

(2π)4
b{2M

2

m2
π

F [2M2 − 2

m2
π

((q+ · P )(q− · P ) +m2
π(q+ · q−))]

+E[(q+ · P )− (q− · P )]}

Finally we can further simplify the equations for E and F by using the fact that
(q+ · P ) − (q− · P ) = P 2 = −m2

π. Without loss of generality we can choose the
three-momentum ~p of the pion to be aligned with the P1 direction, so that its four-
momentum is given by P µ = (i

√
m2

π + P 2
1 , P1). With that the scalar products of

the form q · P further simplify to

q · P = iq
√
m2

π + P 2
x cosψ + qP1 sinψ cosϑ ≡ iqz

√
m2

π + P 2
1 + qP1y

√
1− z2

with the notation introduced in section A.4. Since non of the scalar products
depend on the integration variable ϕ, we can already solve one integral trivially.
Lastly we introduce the constant N = 1

6m2
Gπ3 , so that we finally remain with the

matrix elements

κEE =4N
∫ ∞

d(q, z, y)
(q+ · q−) +M2

(q2− +M2)(q2+ +M2)
(B.30)

κEF =− 4m2
πN

∫ ∞
d(q, z, y)

1

(q2− +M2)(q2+ +M2)
(B.31)

κFE =2M2N
∫ ∞

d(q, z, y)
1

(q2− +M2)(q2+ +M2)
(B.32)

κFF =− 2N
∫ ∞

d(q, z, y)
M2 −m−2

π (m2
π(q+ · q−) + 2(q+ · P )(q− · P ))

(q2− +M2)(q2+ +M2)
. (B.33)
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B.4 Derivation of the chiral quark condensate
We start by substituting our result for the quark propagator into eq. (3.8)

〈
QQ
〉
= NNc

∫
d4q

(2π)4
tr

(−i/q +M

q2 +M2

)
. (B.34)

Again, using the tracelessness of the gamma matrices and evaluating the angular
integrals, we get1

〈
QQ
〉
=

3

4π2
N

∞∫
0

dx
xM

x+M2
, (B.35)

which also has to be regularized as well. Comparing this expression with equation
(3.3), we can see, that

〈
QQ
〉

and M indeed satisfy the relation

〈
QQ
〉
/N =

9

4
m2

G(M −mc). (B.36)

B.5 Derivation of the normalization condition
We start with equation (2.44):

1 =
d

dP 2
tr

∫
d4q

(2π)4
Γ(q,K)S(q+)Γ(q,K)S(q−) (B.37)

We plug in the expressions for Γ, Γ and S we obtained earlier

Γ = γ5
(
iE +

/P

M
F

)
, Γ = γ5

(
iE −

/P

M
F

)
, S(q±) =

−i/q± +M

q2± +M2
. (B.38)

The following steps are analogous to the ones done in section B.3, so we will not
do them as detailed here. Basically we write out the expressions in full and take
the trace of colour, flavour and Dirac indices using the relations of the gamma
matrices. After all of this is done, we can again integrate one of the four integrals
trivially and end up with

1Assuming Nc = 3 for the three colors r, g, and b.
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1 =
3

π3

d

dP 2

∫
d(q, z, y)

{
[−M2 − (q+ · q−)]E2 − 2(p ·K)EF

+
[
K2 +M−2(2(q+ ·K)(q− ·K)−K2(q+ · q−))

]
F 2

}
·
[
(q2− +M2)(q2+ +M2)

]−1
.

At this point it is possible to solve this equation by the method explained in section
3.2.1, but taking the derivative with respect to P 2 is rather unconventional. Thus
we use the substitution

d

dP 2
−→ 1

2P

d

dP
(B.39)

to achieve a differentiation with respect to P . After all we end up with the wanted
relation

1 =
3

2Pπ3

d

dP

∫
d(q, z, y)

{
[−M2 − (q+ · q−)]E2 − 2(p ·K)EF

+
[
K2 +M−2(2(q+ ·K)(q− ·K)−K2(q+ · q−))

]
F 2

}
·
[
(q2− +M2)(q2+ +M2)

]−1
.

In the moving frame this equation has to be solved in full, while in the rest frame
the integration over y can be done trivially, which yields a factor of 2.



Appendix C

Numerical methods and software
used

Most of the equations in this thesis cannot be solved analytically, so numerical
solution techniques have to be consulted. All of the computations have been pro-
grammed in C++11 using the JetBrains CLion IDE1 and the C++ compiler from
the GNU compiler collection, published under the GNU General Public License.
The results have been plotted using gnuplot version 4.6 patchlevel 4. If not ex-
plicitly stated otherwise, all graphics have been created using the tikz package for
LATEX. Feynman diagrams have been drawn using the tikz-feynman package by
Joshua Ellis.2

C.1 Numerical integration
There are many ways to approach the task of numerical integration. The simplest
is the bar method, which approximates the integral of a function f over a given in-
terval (a, b) by approximating the area under the function with rectangles of equal
width and their height being the functions value at the center of each rectangle’s
base. This can be written as the equation

b∫
a

f(x)dx ≈
N∑
i=1

f(xi) ·∆x, (C.1)

with xi = a+ 2i−1
2N

(b− a) and ∆x = b−a
N

.
This method however is not very efficient as it only converges slowly for increasing

1Student’s license
2jpellis.me/projects/tikz-feynman/
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N . A faster method is the Gauß-Legendre method, where the function is no longer
evaluated at equidistant points but instead is only evaluated at the specific set of
points xi which all have their own weight factor wi, so that we get

b∫
a

f(x)dx ≈
N∑
i=1

f(xi) · wi. (C.2)

With the correct choice of the abscissas and weights this method converges faster
for smaller values of N . A subroutine to calculate appropriate values for the
abscissas and weights can be found in [20].

C.2 Numerical differentiation
The procedure used to numerically find the derivative of a function follows a similar
idea as the numerical integration. The idea is to start with the exact definition of
the derivative

f ′(x) := lim
ε→0

f(x+ ε)− f(x)
ε

. (C.3)

Instead of going to the exact limit ε→ 0, we just plug in a small but non-zero value
for ε. In general a smaller value for ε leads to a more precise result. If ε gets to
small though, this method becomes unstable and might give wrong results. In this
thesis ε = 10−6 has been used for all derivatives, that have been done numerically.

C.3 Root finding methods
To find the zeros of the function f(m) = λ(m)− 1 the false position method, also
called regula falsi, has been used. The method requires a continuous function f
given in an interval [x1, x2] with the condition f(x1)·f(x2) < 0, assuring that a root
can be found in the given interval. The idea behind this method is to approximate
the function as linear in the interval. The linear approximation crosses the x-axis
at a point x3 ∈ (x1, x2), which then replace one of the original points x1 or x2,
depending on the sign of f(x3). This procedure is iterated over and over until a
certain accuracy ∆x is reached.

The false position method converges faster than most simpler methods, such
as the bisection method. There are still methods that are faster, such as the
secant method, but some do not converge at all for certain function, while the
false position method always converges. An implementation of this method in
C/C++ can be found in [20].
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