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1 Introduction

The theory, which describes the strong interaction between hadrons and their constituents is
called Quantumchromodynamics, or QCD for short. On a quantum field theory level, its main
components are Ny massive fermion fields, called quarks, and eight SU(3) gauge fields, called
gluons. When taking a look at the spectrum of light hadrons and comparing it to the masses
of the bare quarks, there are a few things that seem odd at a first glance. First of all, it seems
odd, that the masses of the light hadrons are so much higher than the bare masses of their quark
constituents. In fact, the masses of the proton and neutron are about 100 times larger than the
combined masses of their quark content [I]. Knowing this, it should come as a surprise, that
the light pseudoscalar mesons, in particular the pions, kaons and the 7, are considerably lighter
compared to the light baryons.

These phenomena are consequences of the symmetries of the underlying theory. We want to
focus on a particular effect called spontaneous symmetry breaking. It is the process, which is
responsible for the light masses of the pseudoscalar mesons. It also makes the quarks obtain an
effective mass due to self interaction, which is much higher than their bare mass.

2 Symmetries

To understand the concept of spontaneous symmetry breaking, it is useful to first of all think
about what a symmetry actually is. For our purposes we will use the following definition:

A symmetry is a transformation, which when applied to the fundamental degrees of freedom
of a theory leaves the action unchanged.

In field theories, such as QCD, the fundamental degrees of freedom mentioned above are the
fields themselves. In the case of QCD they are the quark and gluon fields. The transformations
can be split into two different kind of transformations, discrete and continuous ones. Discrete
transformations are classified by the fact, that they form a group, which has a countable amount
of elements. These include, but are not limited to, spatial inversion, permutation and charge con-
jugation. Continuous transformations also form a group, but in contrast to discrete transforma-
tions the group has an uncountable amount of elements, which can be continuously transformed
into each other by varying a set of parameters. Such transformations include Poincaré transfor-
mations, U(N) transformations and SO(N) transformations. Next we shall see how symmetries
actually affect the physics of a theory.

2.1 Consequences of symmetries

On top of oftentimes simplifying calculations, symmetries also manifest themselves in the actual
physics of a theory. The most notable consequence of a continuous symmetry is Noether’s
theorem. It states that for every continuous symmetry of a field theory there is a conserved
current J,5* = 0. An important example for this is that space-time symmetries, i.e. invariance
under spatial rotations and space-time translations, imply the conservation of energy, momentum
and angular momentum. Other symmetries also have conservation laws attached to them, some
of which we will take a closer look at later.



2.2 Symmetry breaking

Since symmetries play an important role in our understanding of filed theories, it is also inter-
esting to look at symmetries, that are not exact, but broken in some way.

Explicit symmetry breaking

The most obvious way to break a symmetry is by adding a term to the action, which is not
invariant under the symmetry transformation. One such case is a mass term breaking the axial
U(1)4 and SU(N) 4 symmetries of a theory with N flavours of fermions in it. This is also the
case in QCD, as we will see later. Symmetries do not have to be broken explicitly though. They
can be broken in different, more subtle ways.

Anomalous symmetry breaking

One such way is via anomalous symmetry breaking. It only occurs in quantum field theories,
when quantum fluctuations break an otherwise fine symmetry of the classical action. This
manifests itself through the fact, that such symmetries are broken by the introduction of an
ultraviolet regulator and that the symmetry is not restored when the regulator is removed after
renormalization. This results in a non-zero divergence of the current j*, which does not vanish
when the regulator is removed, so the current is not conserved. A famous example for this is
the U(1)4 symmetry of a gauge theory with fermions [2]. As mentioned above, a mass term
breaks this symmetry explicitly, but even if the fermions are massless, the symmetry is broken
anomalously.

Spontaneous symmetry breaking

Another way to break a symmetry is spontaneous symmetry breaking. We call a symmetry
spontaneously broken, if it is a symmetry of the action, but not of the ground state of the
theory. Note, that this is not the same as anomalous symmetry breaking. While anomalies occur
due to quantum fluctuations and the need of a regulator in quantum field theories, spontaneous
symmetry breaking can also appear outside of quantum field theories. The prime example for this
is a ferromagnet under the critical temperature T,.. At these temperatures the ground state of the
ferromagnet has a non zero magnetization along some axis. Therefore, the SO(3) symmetry of
the action is broken down to an SO(2) symmetry, representing rotations along its magnetization
axis.

Spontaneous symmetry breaking is particularly interesting, since it has direct consequences on
physical observables. Most notably, every spontaneously broken continuous symmetry leads to
one massless boson appearing in the spectrum of the theory. This is called Goldstone’s theorem,
the massless bosons are called Goldstone bosons.

While this theorem can be proven in general [3], it is helpful to find a way to intuitively think
about this result. If we assume a theory with a spontaneously broken continuous symmetry,
this theory will have a continuum of degenerate ground states, which can be transformed into
each other via that symmetry transformation. Thus, the ground states can be labelled by a
set of parameters corresponding to the parameters of the transformation. We will write them
as 0. Given a ground state |6), a transformation into a different ground state |6’) requires no
additional energy. Therefore, it can be transmitted by excitations with arbitrary small energies.
This implies, that there is no mass gap in the spectrum, so there have to be massless particles,
which correspond to these excitations.

This already hints at the low masses of the pseudoscalar mesons in the QCD spectrum. Later



we will see, that they are in fact Goldstone bosons of a spontaneously broken symmetry. But
in order to understand, which symmetry this is and why their masses are not exactly zero in
reality, we have to take a closer look at the symmetries of QCD.

2.3 Symmetries of QCD

We now want to investigate the symmetries of QCD. Therefore, we take a look at the QCD
action, which is the simplest local SU(3) gauge theory with fermions we can write down. In
4-dimensional euclidean space-time it is given by [2]
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Here the 9; and 9, are the quark fields and their conjugate fields, I) = @ + ig4 is the covariant
derivative and F}j, is the gluon field strength tensor. By construction, this action is invariant
under a local SU(3) gauge transformation. This action also has a set of global symmetries. We
want to focus on the symmetries of the quark fields.

First of all, the action is also invariant under a global U(1)y transformation of the quark fields

i(x) = e“ix), (2)

where 0 is a real parameter. The conservation law connected with this symmetry is the conser-
vation of baryon number, which is a fine symmetry even in the full quantum field theory. If the
quark masses m; are zero, the action also has an axial U(1)4 symmetry, which differs from the
U(1)y symmetry by insertion of a 4° matrix in the argument of the exponential

Yi(z) — 6”5‘91/)1»(1‘). (3)

This symmetry is explicitly broken by the quark masses, since the mass term m;v;1; is not
invariant under this transformation but picks up a factor of exp (2i'y50). Even in the chiral limit
when the quark masses are set to zero, the symmetry is broken anomalously as mentioned in the
previous section.

The QCD action has additional symmetries under the condition, that there are N < Ny flavours
of quarks, which have the same mass m.. In that case, the action is also invariant under an
SU(N) transformation which mixes these flavours

vi(x) = (Uh);; ¥;(2), (4)

with [ € {V, A} labeling the symmetry as vector or axial symmetry. Uy = exp (i0%7%) is an
SU(N)y matrix, the 7% are the N(IN—1)/2 generators of the SU(N) group and the 6§ are the cor-
responding parameters. If additionally m. = 0, there is also the axial SU(IN)4 symmetry, which
again corresponds to an insertion of 4 in the argument of the exponential, Uy = exp (i’y59“7“).
In total these global symmetries can be summarized as

SU(N)y @ SUN)a®@U(1)y @ U(1) 4, (5)



In the real world, the quark masses are all different and nonzero, therefore all of the symmetries
except for the U(1)y are broken explicitly by mass terms. If the quark masses and their differences
are small compared to Aqcp, which is the case for up-, down- and, arguably, strange quarks these
symmetries are good approximate symmetries though.

2.4 The pion as Goldstone boson

In the chiral limit the SU(N)4 symmetry is actually broken spontaneously. By Goldstone’s
theorem we therefore expect massless Goldstone bosons to appear. In fact, the spontaneous
symmetry breaking results in the pion mass being zero for N = 2 flavours of massless quarks
and the kaon and 7 having zero mass additionally to the pion for N = 3. This can be seen in
numerical calculations [4], but it can also be shown analytically. Since the real world does have
quark masses, the SU(N)4 symmetry is broken explicitly, therefore the pion mass is not zero.
The relation between the pion mass and the quark mass m, is called the Gell-Mann-Oakes-Renner
relation [5]

famz = =2me (Yu) /N, (6)

with f; being the decay constant of the pion. <Ew> is called the chiral quark condensate. A non-

zero value of <Ew> indicates, that the chiral SU(NN)4 symmetry is spontaneously broken. From
this relation we can directly see, that in the chiral limit either the mass or the decay constant of
the pion has to be zero. One can further show that if chiral symmetry is spontaneously broken
the decay constant has to be non zero [5]. Therefore, the mass of the pion is indeed zero in the
chiral limit, making it the Goldstone boson we expect.

Another consequence of the relation [f] is, that the mass of the pion grows proportional to the
square root of the quark mass m.. This explains, why in the real world the pion has a non-zero,
but light mass.
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